Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Flexible integration of a navigable, clustered environment

MPG-Autoren
/persons/resource/persons192615

Strickrodt,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84081

Meilinger,  T
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Social & Spatial Cognition, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Strickrodt, M., Bülthoff, H., & Meilinger, T. (2017). Flexible integration of a navigable, clustered environment. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Computational Foundations of Cognition (pp. 1156-1156). Austin, TX, USA: Cognitive Science Society.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-C3A5-9
Zusammenfassung
The representation of navigable space, consisting of multiple interconnected spaces, yet is not well understood. We examined different levels of integration within memory (local, regional, global). Participants learned two distinctive regions of a virtual environment that converged at a common transition-point. Subsequently, we tested their memory with a pointing task, varying body alignment during pointing, corridor distance to and regional belonging of the target. Pointing latency increased with increasing distance to the target and when pointing into the other region. Further, alignment with local, regional and global reference frames were found to facilitate pointing latency. These findings suggest that participants memorized local corridors, clustered corridors into regions, and also formed global reference frames, thus, represented the environment on multiple levels of integration. They are inconsistent with conceptions of spatial memory for navigable environments based either on exclusive representation within a single reference frame or exclusive reliance on local reference frames.