English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Investigation and Evaluation of Control Design Requirements for Future Personal Aerial Vehicles

MPS-Authors
/persons/resource/persons192799

Gerboni,  CA
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133474

Geluardi,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gerboni, C., Geluardi, S., Fichter, W., & Bülthoff, H. (2017). Investigation and Evaluation of Control Design Requirements for Future Personal Aerial Vehicles. In The Future of Vertical Flight (pp. 1483-1494). Red Hook, NY, USA: Curran.


Cite as: https://hdl.handle.net/21.11116/0000-0000-C3B1-B
Abstract
The study presented in this paper investigates bandwidth and disturbance rejection requirements for a new kind of vehicle, namely the Personal Aerial Vehicle (PAV). PAVs are here meant as augmented rotorcraft that can be safely flown by pilots after a training comparable in length to that necessary to learn how to drive a car. Therefore, the control augmentation system should ensure both stability and disturbance rejection properties while meeting handling qualities suitable for minimal-trained pilots. The investigation is conducted by designing a family of controllers to achieve different trade-offs between stability, handling qualities and robustness requirements. The goal is to evaluate which control design provides the best characteristics to help minimal-trained pilots when operating in turbulent conditions. The evaluation is conducted by means of a pilot in-the-loop experiment in the Max Planck Institute CyberMotion Simulator. The experiment is conducted with 21 participants with no prior flight experience divided into three groups. Each group has to perform the same control task maneuver but with a different augmented helicopter dynamics. The performance analysis is carried out by considering both objective metrics and subjective evaluations. Results show that the design with improved disturbance rejection properties helped the participants achieve better performance and workload levels in turbulent conditions. However, a relaxation of the stability margins is necessary to achieve these properties and must be taken into account for an actual implementation in a helicopter.