English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Pharmaco-Based fMRI and Neurophysiology in Non-human Primates

MPS-Authors
/persons/resource/persons84324

Zaldivar,  D
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84158

Rauch,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83937

Goense,  J
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zaldivar, D., Logothetis, N., Rauch, A., & Goense, J. (2017). Pharmaco-Based fMRI and Neurophysiology in Non-human Primates. In A. Philippu (Ed.), In Vivo Neuropharmacology and Neurophysiology (pp. 37-66). New York, NY, USA: Springer.


Cite as: https://hdl.handle.net/21.11116/0000-0000-C3CF-B
Abstract
Brain activity is continuously changing, among others reflecting the effects of neuromodulation on multiple spatial and temporal scales. By altering the input–output relationship of neural circuits, neuromodulators can also affect their energy expenditure, with concomitant effects on the hemodynamic responses. Yet, it is still unclear how to study and interpret the effects of different neuromodulators, for instance, how to differentiate their effects from underlying behavior- or stimulus-driven activity. Gaining insights into neuromodulatory processes is largely hampered by the lack of approaches providing information concurrently at different spatio-temporal scales. Here, we provide an overview of the multimodal approach consisting of functional magnetic resonance imaging (fMRI), pharmacology and neurophysiology, which we developed to elucidate causal relationships between neuromodulation and neurovascular coupling in visual cortex of anesthetized macaques.