Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Magnetization exchange between water and downfield metabolites in human brain at 9.4T

MPG-Autoren
/persons/resource/persons192635

Giapitzakis,  I-A
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133464

Avdievich,  N
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84324

Zaldivar,  D
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fichtner, N., Giapitzakis, I.-A., Avdievich, N., Mekle, R., Zaldivar, D., Henning, A., et al. (2017). Magnetization exchange between water and downfield metabolites in human brain at 9.4T. Poster presented at 25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2017), Honolulu, HI, USA.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-C499-6
Zusammenfassung
Ultra-high field strengths provide higher signal to noise ratio and improved separation of metabolites in spectroscopy, allowing for more precise characterization of peaks. In particular, this improved peak resolution may be of benefit for characterization of the downfield (5-10ppm) spectrum, which is not yet well characterized; this experiment aims to improve knowledge of downfield peaks by investigating their exchange rates and T1 values at 9.4T, using inversion transfer experiments and metabolite cycling to allow for non-water suppressed acquisition.