Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

The Impact of the Local, Mesoscopic Frequency Distribution and Diffusion in Gray and White Matter to the Static bSSFP Signal Profile

MPG-Autoren
/persons/resource/persons214679

Báez-Yánez,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83898

Ehses,  P
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Báez-Yánez, M., Ehses, P., & Scheffler, K. (2017). The Impact of the Local, Mesoscopic Frequency Distribution and Diffusion in Gray and White Matter to the Static bSSFP Signal Profile. Poster presented at 25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2017), Honolulu, HI, USA.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-C4A3-A
Zusammenfassung
The phase accumulation that spins experience during a MR sequence is closely linked to the microstructure within the voxel, and basically produces changes in T2* or T2. The present abstract demonstrates how the static bSSFP signal profile is modified by the influence of local susceptibility differences produce by the underlying local-frequency distribution and diffusion effects related to white matter and gray matter at 9.4T. We apply an analytical presentation of the diffusion-modified frequency distribution, previously only used for gradient and spin echoes, to bSSFP and we prove the applicability of this theory to bSSFP by Monte Carlo simulations and measurements.