English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Motion simulation and correction validation using MR tagging

MPS-Authors
/persons/resource/persons192852

Aghaeifar,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Aghaeifar, A., Moghaddam, A., & Scheffler, K. (2017). Motion simulation and correction validation using MR tagging. Poster presented at 25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2017), Honolulu, HI, USA.


Cite as: https://hdl.handle.net/21.11116/0000-0000-C4DB-C
Abstract
Involuntary subject motion is a well-known problem in MR imaging. Motion simulation is an important step to evaluate correction performance and motion induced artifacts. Here we introduce a new approach based on MR tagging to simulate desired motion pattern on a plain phantom. We employed SPAMM method to generate grid tags with a specified orientation and position. Grid tags were rotated and shifted with a desired pattern per TR. Correspondingly, the imaging slice followed the pattern to compensate the rotation and translation of the tags. Employing this approach, we could simulate motion in 5 DOF.