English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Isolation and Characterization of a Hepatitis B Virus Endemic in Herons

MPS-Authors
/persons/resource/persons95439

Sprengel,  Rolf
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Rolf Sprengel Group, Max Planck Institute for Medical Research, Max Planck Society;
Olfaction Web, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sprengel, R., Kaleta, E. F., & Will, H. (1988). Isolation and Characterization of a Hepatitis B Virus Endemic in Herons. Journal of Virology, 62(10), 3832-3839. Retrieved from http://jvi.asm.org/content/62/10/3832.abstract.


Cite as: http://hdl.handle.net/21.11116/0000-0000-B162-9
Abstract
A new hepadnavirus (designated heron hepatitis B virus [HHBV]) has been isolated; this virus is endemic in grey herons (Ardea cinerea) in Germany and closely related to duck hepatitis B virus (DHBV) by morphology of viral particles and size of the genome and of the major viral envelope and core proteins. Despite its striking similarities to DHBV, HHBV cannot be transmitted to ducks by infection or by transfection with cloned viral DNA. After the viral genome was cloned and sequenced, a comparative sequence analysis revealed an identical genome organization of HHBV and DHBV (pre-C/C-, pre-S/S-, and pol-ORFs). An open reading frame, designated X in mammalian hepadnaviruses, is not present in DHBV. DHBV and HHBV differ by 21.6% base exchanges, and thus they are less closely related than the two known rodent hepatitis B viruses (16.4%). The nucleocapsid protein and the 17-kilodalton envelope protein sequences of DHBV and HHBV are well conserved. In contrast, the pre-S part of the 34-kilodalton envelope protein which is believed to mediate virus attachment to the cell is highly divergent (less than 50% homology). The availability of two closely related avian hepadnaviruses will now allow us to test recombinant viruses in vivo and in vitro for host specificity-determining sequences.