English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Results from a calibration of XENON100 using a source of dissolved radon-220

MPS-Authors
/persons/resource/persons199568

Bruenner,  S.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons101514

Cichon,  Dominick
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons127658

Hasterok,  C.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30768

Lindner,  M.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony, M., et al. (2017). Results from a calibration of XENON100 using a source of dissolved radon-220. Physical Review D, 95(7): 072008. doi:10.1103/PhysRevD.95.072008.


Cite as: https://hdl.handle.net/21.11116/0000-0001-2B29-2
Abstract
A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220-Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t(1/2) = (293.9 +/- (1.0)(stat) +/- (0.6)(sys)) ns.