Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Comparison of experimental and theoretical fully differential cross sections for single ionization of the 2s and 2p states of Li by Li2+ ions

MPG-Autoren
/persons/resource/persons30472

Fischer,  Daniel
Daniel Fischer - Emmy Noether Junior Research Group, Junior Research Groups, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37870

Goullon,  Johannes
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37815

Hubele,  Renate
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ghanbari-Adivi, E., Fischer, D., Ferreira, N., Goullon, J., Hubele, R., LaForge, A., et al. (2017). Comparison of experimental and theoretical fully differential cross sections for single ionization of the 2s and 2p states of Li by Li2+ ions. Journal of Physics B, 50(21): 215202. doi:10.1088/1361-6455/aa8dd2.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-095A-1
Zusammenfassung
This paper presents experimental measurements of the fully differential cross section for 16. MeV Li2+ single ionization of 2s ground and the 2p excited state of Li in the azimuthal plane. Data were obtained for three different ejected electron energies and two different projectile momentum transfers. The experimental results are compared with theoretical three-body continuum distorted wave-Eikonal initial state calculations and reasonable good agreement is found between theory and experiment. Theory predicts a double peak structure for one of the measured cases and the physical effects producing the double peak are investigated by performing calculations with different interactions either turned on or off.