English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Aging affects adaptation to sound-level statistics in human auditory cortex

MPS-Authors
/persons/resource/persons19833

Maess,  Burkhard
Methods and Development Group MEG and EEG - Cortical Networks and Cognitive Functions, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Herrmann, B., Maess, B., & Johnsrude, I. S. (2018). Aging affects adaptation to sound-level statistics in human auditory cortex. The Journal of Neuroscience, 38(8), 1989-1999. doi:10.1523/JNEUROSCI.1489-17.2018.


Cite as: http://hdl.handle.net/21.11116/0000-0000-B9E9-9
Abstract
Optimal perception requires efficient and adaptive neural processing of sensory input. Neurons in nonhuman mammals adapt to the statistical properties of acoustic feature distributions such that they become sensitive to sounds that are most likely to occur in the environment. However, whether human auditory responses adapt to stimulus statistical distributions and how aging affects adaptation to stimulus statistics is unknown. We used MEG to study how exposure to different distributions of sound levels affects adaptation in auditory cortex of younger (mean: 25 years; n = 19) and older (mean: 64 years; n = 20) adults (male and female). Participants passively listened to two sound-level distributions with different modes (either 15 or 45 dB sensation level). In a control block with long interstimulus intervals, allowing neural populations to recover from adaptation, neural response magnitudes were similar between younger and older adults. Critically, both age groups demonstrated adaptation to sound-level stimulus statistics, but adaptation was altered for older compared with younger people: in the older group, neural responses continued to be sensitive to sound level under conditions in which responses were fully adapted in the younger group. The lack of full adaptation to the statistics of the sensory environment may be a physiological mechanism underlying the known difficulty that older adults have with filtering out irrelevant sensory information.