User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Light-Mediated Collective Atomic Motion in an Optical Lattice Coupled to a Membrane


Hammerer,  Klemens
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

(Preprint), 694KB

Supplementary Material (public)
There is no public supplementary material available

Vochezer, A., Kampschulte, T., Hammerer, K., & Treutlein, P. (2018). Light-Mediated Collective Atomic Motion in an Optical Lattice Coupled to a Membrane. Physical Review Letters, 120: 073602. doi:10.1103/PhysRevLett.120.073602.

Cite as: http://hdl.handle.net/21.11116/0000-0000-BA2B-F
We observe effects of collective atomic motion in a one-dimensional optical lattice coupled to an optomechanical system. In this hybrid atom-optomechanical system, the lattice light generates a coupling between the lattice atoms as well as between atoms and a micromechanical membrane oscillator. For large atom numbers we observe an instability in the coupled system, resulting in large-amplitude atom-membrane oscillations. We show that this behavior can be explained by light-mediated collective atomic motion in the lattice, which arises for large atom number, small atom-light detuning and asymmetric pumping of the lattice, in agreement with previous theoretical work. The model connects the optomechanical instability to a phase delay in the global atomic back-action onto the lattice light, which we observe in a direct measurement.