Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

All-loop Mondrian Diagrammatics and 4-particle Amplituhedron

MPG-Autoren
/persons/resource/persons217156

Rao,  Junjie
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

An, Y., Li, Y., Li, Z., & Rao, J. (2018). All-loop Mondrian Diagrammatics and 4-particle Amplituhedron. Journal of high energy physics: JHEP, 2018(06): 023. doi:10.1007/JHEP06(2018)023.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-BA75-B
Zusammenfassung
Based on a previous work handling the 4-particle amplituhedron at 3-loop, we have found an extremely simple pattern, yet far more non-trivial than one might naturally expect: the all-loop Mondrian diagrammatics. By further simplifying and rephrasing the key relation of positivity in the amplituhedron setting, remarkably, we find a completeness relation unifying all diagrams of the Mondrian types for the 4-particle integrand of planar N=4 SYM to all loop orders, each of which can be mapped to a simple product following a few plain rules designed for this relation. The explicit examples we investigate span from 3-loop to 7-loop level, and based on them, we classify the basic patterns of Mondrian diagrams into four types: the ladder, cross, brick-wall and spiral patterns. Interestingly, for some special combinations of ordered subspaces (a concept defined in the previous work), we find failed exceptions of the completeness relation which are called "anomalies", nevertheless, they substantially give hints on the all-loop recursive proof of this relation. These investigations are closely related to the combinatoric knowledge of separable permutations and Schroeder numbers, and go even further from a diagrammatic perspective. For physical relevance, we need to further consider dual conformal invariance for two basic diagrammatic patterns in order to obtain the correct numerator for an integrand that involves such patterns, while the denominator encoding its pole structure, and also the sign factor, are already fixed by rules of the completeness relation. With this extra treatment to ensure the integrals are dual conformally invariant, Mondrian diagrams can be exactly translated to their corresponding physical loop integrals, after the summation over all ordered subspaces that admit each of them.