English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Discovery of a short-chain dehydrogenase from Catharanthus roseus that produces a novel monoterpene indole alkaloid

MPS-Authors
/persons/resource/persons4159

Schneider,  Bernd
Research Group Biosynthesis / NMR, MPI for Chemical Ecology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
Citation

Stavrinides, A. K., Tatsis, E. C., Dang, T.-T., Caputi, L., Stevenson, C. E. M., Lawson, D. M., et al. (2018). Discovery of a short-chain dehydrogenase from Catharanthus roseus that produces a novel monoterpene indole alkaloid. Chembiochem, 19(9), 940-948. doi:10.1002/cbic.201700621.


Cite as: http://hdl.handle.net/21.11116/0000-0000-C1C3-9
Abstract
Monoterpene indole alkaloids, a large class of plant natural products, derive from the biosynthetic intermediate strictosidine aglycone. Strictosidine aglycone, which can exist as a variety of isomers, can be reduced to form numerous different structures. We have discovered a short chain alcohol dehydrogenase (SDR) from monoterpene indole alkaloid producing plants (Catharanthus roseus and Rauvolfia serpentina) that reduce strictosidine aglycone and produce an alkaloid that does not correspond to any previously reported compound. Here we report the structural characterization of this product, which we have named vitrosamine, as well as the crystal structure of the SDR. This discovery highlights the structural versatility of the strictosidine aglycone biosynthetic intermediate and expands the range of enzymatic reactions that SDRs can catalyze. This discovery further highlights how a sequence-based gene mining discovery approach in plants can reveal cryptic chemistry that would not be uncovered by classical natural product chemistry approaches