English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enhanced rates of regional warming and ocean acidification after termination of large-scale ocean alkalinization

MPS-Authors
/persons/resource/persons146052

Ferrer-Gonzalez,  Miriam
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37188

Ilyina,  Tatiana       
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons124174

Sonntag,  Sebastian
Emmy Noether Junior Research Group Forest Management in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37320

Schmidt,  Hauke       
Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
Global Circulation and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

GRL-2018-45-7120.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ferrer-Gonzalez, M., Ilyina, T., Sonntag, S., & Schmidt, H. (2018). Enhanced rates of regional warming and ocean acidification after termination of large-scale ocean alkalinization. Geophysical Research Letters, 45, 7120-7129. doi:10.1029/2018GL077847.


Cite as: https://hdl.handle.net/21.11116/0000-0000-CF27-C
Abstract
Termination effects of large‐scale Artificial Ocean Alkalinization (AOA) have received little attention because AOA was assumed to pose low environmental risk. With the Max‐Planck‐Institute Earth System Model, we use emission‐driven AOA simulations following the Representative Concentration Pathway 8.5 (RCP8.5). We find that after termination of AOA warming trends in regions of the Northern hemisphere become ∼50% higher than those in RCP8.5 with rates similar to those caused by termination of solar geoengineering over the following three decades after cessation (up to 0.15 K/year). Rates of ocean acidification after termination of AOA outpace those in RCP8.5. In warm shallow regions where vulnerable coral reefs are located, decreasing trends in surface pH double (0.01 units/year) and the drop in the carbonate saturation state (Ω) becomes up to one order of magnitude larger (0.2 units/year). Thus, termination of AOA poses higher risks to biological systems sensitive to fast‐paced environmental changes than previously thought.