Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

From Parity to Preference-based Notions of Fairness in Classification

MPG-Autoren
/persons/resource/persons145105

Zafar,  Muhammad Bilal
Group K. Gummadi, Max Planck Institute for Software Systems, Max Planck Society;

Valera,  Isabel
Group M. Gomez Rodriguez, Max Planck Institute for Software Systems, Max Planck Society;

/persons/resource/persons75510

Gomez Rodriguez,  Manuel
Group M. Gomez Rodriguez, Max Planck Institute for Software Systems, Max Planck Society;

/persons/resource/persons144524

Gummadi,  Krishna
Group K. Gummadi, Max Planck Institute for Software Systems, Max Planck Society;

Weller,  Adrian
Group M. Gomez Rodriguez, Max Planck Institute for Software Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1707.00010.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K., & Weller, A. (2017). From Parity to Preference-based Notions of Fairness in Classification. Retrieved from http://arxiv.org/abs/1707.00010.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-DC08-0
Zusammenfassung
The adoption of automated, data-driven decision making in an ever expanding range of applications has raised concerns about its potential unfairness towards certain social groups. In this context, a number of recent studies have focused on defining, detecting, and removing unfairness from data-driven decision systems. However, the existing notions of fairness, based on parity (equality) in treatment or outcomes for different social groups, tend to be quite stringent, limiting the overall decision making accuracy. In this paper, we draw inspiration from the fair-division and envy-freeness literature in economics and game theory and propose preference-based notions of fairness -- given the choice between various sets of decision treatments or outcomes, any group of users would collectively prefer its treatment or outcomes, regardless of the (dis)parity as compared to the other groups. Then, we introduce tractable proxies to design margin-based classifiers that satisfy these preference-based notions of fairness. Finally, we experiment with a variety of synthetic and real-world datasets and show that preference-based fairness allows for greater decision accuracy than parity-based fairness.