Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Inhibitory Transfer of Thalamocortical Input in a Column of Rat Vibrissal Cortex

MPG-Autoren
/persons/resource/persons214520

Udvary,  D
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84931

Egger,  R
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84910

Oberlaender,  M
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Udvary, D., Meyer, R.-S., Egger, R., Guest, J., Feldmeyer, D., & Oberlaender, M. (2015). Inhibitory Transfer of Thalamocortical Input in a Column of Rat Vibrissal Cortex. Poster presented at 16th Conference of Junior Neuroscientists of Tübingen (NeNa 2015): Communicating the Challenges of Science, Schramberg, Germany.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-E318-5
Zusammenfassung
Thalamocortical (TC) afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles underlying spread of inhibition within a column
remain, however, unknown. Here, we unravel how TC input may be relayed spatially by inhibitory interneurons (INs) by classifying axonal projection patterns of INs (N=204)
located throughout layers (L) 2-6 in rat vibrissal cortex (vS1). We found five projection types independent of laminar location and postsynaptic target specificity. We integrated these into a dense average 3D model of rat vS1, thus allowing describing TC input to INs by structural overlap. This procedure provided first-order quantitative estimates of how TC input is relayed by INs within a column. We found three major TC->IN pathways that are largely decoupled from those of excitatory cell types: (i) focal inhibition to L4, (ii) blanket inhibition, and (iii) specific inhibition targeting cortical zones of highest IN soma density.