English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spectral Clustering predicts tumor tissue heterogeneity using dynamic 18F-FDG PET: a complement to the standard compartmental modeling approach

MPS-Authors
/persons/resource/persons203235

Katiyar,  P.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Locator

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B. J., et al. (2017). Spectral Clustering predicts tumor tissue heterogeneity using dynamic 18F-FDG PET: a complement to the standard compartmental modeling approach. Journal of Nuclear Medicine, 58(4), 651-657. doi:10.2967/jnumed.116.181370.


Cite as: http://hdl.handle.net/21.11116/0000-0001-0126-3
Abstract
There is no abstract available