Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

De novo evolved interference competition promotes the spread of biofilm defectors

MPG-Autoren
/persons/resource/persons147483

Hölscher,  Theresa
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

IMPRS089.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

IMPRS089s1.pdf
(Ergänzendes Material), 2MB

IMPRS089s2.xlsx
(Ergänzendes Material), 668KB

Zitation

Martin, M., Dragoš, A., Hölscher, T., Maróti, G., Bálint, B., Westermann, M., et al. (2017). De novo evolved interference competition promotes the spread of biofilm defectors. Nature Communications, 8: 15127. doi:10.1038/ncomms15127.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-EE64-4
Zusammenfassung
Biofilms are social entities where bacteria live in tightly packed agglomerations, surrounded by self-secreted exopolymers. Since production of exopolymers is costly and potentially exploitable by non-producers, mechanisms that prevent invasion of non-producing mutants are hypothesized. Here we study long-term dynamics and evolution in Bacillus subtilis biofilm populations consisting of wild-type (WT) matrix producers and mutant non-producers. We show that non-producers initially fail to incorporate into biofilms formed by the WTcells, resulting in 100-fold lower final frequency compared to the WT. However, this is modulated in a long-term scenario, as non-producers evolve the ability to better incorporate into biofilms, thereby slightly decreasing the productivity of the whole population. Detailed molecular analysis reveals that the unexpected shift in the initially stable biofilm is coupled with newly evolved phage-mediated interference competition. Our work therefore demonstrates how collective behaviour can be disrupted as a result of rapid adaptation through mobile genetic elements.