日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Uncertainty in the global oceanic CO2 uptake induced by wind forcing: Quantification and spatial analysis

MPS-Authors
/persons/resource/persons199843

Landschützer,  P.       
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

bg-15-1701-2018.pdf
(出版社版), 5MB

付随資料 (公開)
There is no public supplementary material available
引用

Roobaert, A., Laruelle, G., Landschützer, P., & Regnier, P. (2018). Uncertainty in the global oceanic CO2 uptake induced by wind forcing: Quantification and spatial analysis. Biogeosciences, 15, 1701-1720. doi:10.5194/bg-15-1701-2018.


引用: https://hdl.handle.net/21.11116/0000-0000-FBE3-5
要旨
The calculation of the air-water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air-water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2). The analysis is performed at a 1° × 1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a) for the 1991-2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP) project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k Combining double low line c g U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014), where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009) as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c-) for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study but the resulting global FCO2 estimates still diverge by 10 . These results also reveal that the Equatorial Pacific, the North Atlantic and the Southern Ocean are the regions in which the choice of wind product will most strongly affect the estimation of the FCO2, even when using c-. © Author(s) 2018.