日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation.

MPS-Authors
/persons/resource/persons219703

Stöter,  Martin
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219009

Bickle,  Marc
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219807

Zerial,  Marino
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Heldin,  Carl-Henrik
Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Carthy, J. M., Stöter, M., Bellomo, C., Vanlandewijck, M., Heldin, A., Morén, A., Kardassis, D., Gahman, T. C., Shiau, A. K., Bickle, M., Zerial, M., Heldin, C.-H., & Moustakas, A. (2016). Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation. Scientific Reports, 6:.


引用: https://hdl.handle.net/21.11116/0000-0001-029D-C
要旨
Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer.