Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Control and gating of kinesin-microtubule motility on electrically heated thermo-chips.

MPG-Autoren
/persons/resource/persons219649

Schroeder,  Viktor
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219008

Berndt,  Michael
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219334

Korten,  Till
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219112

Diez,  Stefan
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ramsey, L., Schroeder, V., Zalinge, H. v., Berndt, M., Korten, T., Diez, S., et al. (2014). Control and gating of kinesin-microtubule motility on electrically heated thermo-chips. Biomedical Microdevices, 16(3), 459-463.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-0558-7
Zusammenfassung
First lab-on-chip devices based on active transport by biomolecular motors have been demonstrated for basic detection and sorting applications. However, to fully employ the advantages of such hybrid nanotechnology, versatile spatial and temporal control mechanisms are required. Using a thermo-responsive polymer, we demonstrated a temperature controlled gate that either allows or disallows the passing of microtubules through a topographically defined channel. The gate is addressed by a narrow gold wire, which acts as a local heating element. It is shown that the electrical current flowing through a narrow gold channel can control the local temperature and as a result the conformation of the polymer. This is the first demonstration of a spatially addressable gate for microtubule motility which is a key element of nanodevices based on biomolecular motors.