English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cell cortex composition and homeostasis resolved by integrating proteomics and quantitative imaging.

MPS-Authors
/persons/resource/persons219014

Biro,  Mate
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219348

Kroschwald,  Sonja
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219016

Boden,  Annett
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Charras,  Guillaume
Max Planck Society;

/persons/resource/persons219514

Paluch,  Ewa
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Biro, M., Romeo, Y., Kroschwald, S., Bovellan, M., Boden, A., Tcherkezian, J., et al. (2013). Cell cortex composition and homeostasis resolved by integrating proteomics and quantitative imaging. Cytoskeleton (Hoboken, N.J.), 70(11), 741-754.


Cite as: https://hdl.handle.net/21.11116/0000-0001-069C-9
Abstract
The cellular actin cortex is the cytoskeletal structure primarily responsible for the control of animal cell shape and as such plays a central role in cell division, migration, and tissue morphogenesis. Due to the lack of experimental systems where the cortex can be investigated independently from other organelles, little is known about its composition, assembly, and homeostasis. Here, we describe novel tools to resolve the composition and regulation of the cortex. We report and validate a protocol for cortex purification based on the separation of cellular blebs. Mass spectrometry analysis of purified cortices provides a first extensive list of cortical components. To assess the function of identified proteins, we design an automated imaging assay for precise quantification of cortical actomyosin assembly dynamics. We show subtle changes in cortex assembly dynamics upon depletion of the identified cortical component profilin. Our widely applicable integrated method paves the way for systems-level investigations of the actomyosin cortex and its regulation during morphogenesis. © 2013 Wiley Periodicals, Inc.