English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52

MPS-Authors
/persons/resource/persons219139

Erler,  Axel
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219030

Bradshaw,  Charles Richard
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219426

Maresca,  Marcello
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons101406

Habermann,  Bianca
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Erler, A., Wegmann, S., Elie-Caille, C., Bradshaw, C. R., Maresca, M., Seidel, R., et al. (2009). Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52. Journal of Molecular Biology, 391(3), 586-598.


Cite as: http://hdl.handle.net/21.11116/0000-0001-0CED-8
Abstract
Single-strand annealing proteins, such as Redbeta from lambda phage or eukaryotic Rad52, play roles in homologous recombination. Here, we use atomic force microscopy to examine Redbeta quaternary structure and Redbeta-DNA complexes. In the absence of DNA, Redbeta forms a shallow right-handed helix. The presence of single-stranded DNA (ssDNA) disrupts this structure. Upon addition of a second complementary ssDNA, annealing generates a left-handed helix that incorporates 14 Redbeta monomers per helical turn, with each Redbeta monomer annealing approximately 11 bp of DNA. The smallest stable annealing intermediate requires 20 bp DNA and two Redbeta monomers. Hence, we propose that Redbeta promotes base pairing by first increasing the number of transient interactions between ssDNAs. Then, annealing is promoted by the binding of a second Redbeta monomer, which nucleates the formation of a stable annealing intermediate. Using threading, we identify sequence similarities between the RecT/Redbeta and the Rad52 families, which strengthens previous suggestions, based on similarities of their quaternary structures, that they share a common mode of action. Hence, our findings have implications for a common mechanism of DNA annealing mediated by single-strand annealing proteins including Rad52.