Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Towards digital representation of Drosophila embryogenesis

MPG-Autoren
/persons/resource/persons219549

Preibisch,  S.
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219135

Ejsmont,  R.
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219742

Tomancak,  P.
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Preibisch, S., Ejsmont, R., Rohlfing, T., & Tomancak, P. (2008). Towards digital representation of Drosophila embryogenesis. In E. i. M. Electronics Engineers, S. p. S. Biology Society, & I. of Electrical (Eds.), 2008 IEEE International Symposium on Biomedical Imaging (pp. 324-327). Piscataway: IEEE Service Center.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-0EC2-5
Zusammenfassung
Animal development can be described as a complex, threedimensional cellular system that changes dramatically across time as a consequence of cell proliferation, differentiation and movement. Using Drosophila embryogenesis as a model we are developing molecular, imaging and image analysis techniques to record an entire developmental system at cellular resolution. We image Drosophila embryos expressing fluorescent markers in toto using Single Plane Illumination Microscopy (SPIM). SPIM offers the unique ability to image large living biological specimens in their entirety by acquiring image stacks from multiple angles while also providing high temporal resolution necessary for following dynamic developmental processes. We have developed an image analysis pipeline that efficiently processes long-term time-lapse multi-view SPIM data by aligning the different angles with high precision for a single time point and propagating the alignment parameters throughout the time series. The registered views are fused using an approach that evaluates the image content in each view.