Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

The involvement of ARF6 in rapid membrane recycling during Drosophila spermatocyte cytokinesis

MPG-Autoren
/persons/resource/persons219164

Foster,  Naomi
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Foster, N. (2007). The involvement of ARF6 in rapid membrane recycling during Drosophila spermatocyte cytokinesis. PhD Thesis, Technische Universität Dresden - Dresden.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-0EE9-A
Zusammenfassung
Cytokinesis involves constriction of the cell at the equator. Without decreasing in volume, a spherical cell requires a net increase in the surface area during this constriction. The constriction is driven by formation of an actomyosin contractile ring, and the surface increase by addition of membrane during the formation of the cleavage furrow. Both events depend on the central spindle microtubules at the midzone of the spindle and, in particular, on the centralspindlin protein complex. The communication between the central spindle microtubules and the actomyosin ring involves binding of a GAP and a GEF for RhoA to the centralspindlin kinesin Pavarotti/MKLP1. However, it is still unclear which molecular machinery connects the mitotic spindle to membrane trafficking during cleavage furrow ingression. ARF6 is a member of the ARF family of small GTPases, and previous studies suggest that it is an important regulator of membrane trafficking through the endocytic pathway, and cortical Actin remodelling. I generated an arf6 null mutant in Drosophila. arf6 null mutants survive to adulthood without obvious morphological defects, indicating that ARF6 is not required for Drosophila somatic development. However, ARF6 is required for cytokinesis in Drosophila spermatocytes. The centralspindlin kinesin Pavarotti, identified as an ARF6 interactor in a Yeast-2-Hybrid assay, binds ARF6 in GST pulldowns, and interacts genetically with the arf6 mutant. ARF6 localizes to the plasma membrane and a population of early and recycling endosomes. During cytokinesis, ARF6 is enriched on recycling endosomes at the central spindle. arf6 mutants form a cleavage furrow during cytokinesis, which later regresses. Cytokinesis in arf6 mutant spermatocytes lacks the rapid plasma membrane expansion observed during normal divisions. The results of this study suggest that ARF6 might promote rapid recycling of endosomal membrane stores at the central spindle to the plasma membrane during cytokinesis. ARF6 might be recruited to the central spindle via its interaction with Pavarotti, and act as part of the molecular link between the central spindle cytoskeleton and the rapid plasma membrane addition necessary for cytokinesis.