English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nomenclature of prominin-1 (CD133) splice variants - an update

MPS-Authors
/persons/resource/persons182144

Fargeas,  Christine A.
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219252

Huttner,  Wieland B.
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219079

Corbeil,  Denis
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fargeas, C. A., Huttner, W. B., & Corbeil, D. (2007). Nomenclature of prominin-1 (CD133) splice variants - an update. Tissue Antigens, 69(6), 602-606.


Cite as: https://hdl.handle.net/21.11116/0000-0001-0F71-0
Abstract
Prominin-1 (CD133), a pentaspan membrane glycoprotein that constitutes an important cell surface marker of various, either normal or cancerous, stem cell populations is widely used to isolate or characterize such cells in different systems. Occurring throughout the metazoan evolution with a remarkably conserved genomic organization, it may be expressed as different splice variants with distinctive characteristics. A rational nomenclature has been proposed earlier for their consistent designation across species. Although generally accepted, it seems to be misunderstood in view of the recent report of novel prominin-1 complementary DNAs in rhesus monkey and humans with improper naming. As this may lead to confusion, we have reexamined the genomic organization of prominin-1 in various primates to provide an update that should further clarify the rationale of the nomenclature for prominin-1 gene products. This report comprises (i) the determination of the genomic organization of prominin-1 gene in two non-human primates, i.e. Macaca mulatta and Pan troglodytes, commonly used in research, (ii) the mapping of a new exon that creates an alternative cytoplasmic C-terminal end of prominin-1, (iii) the identification of various potential PDZ-binding domains generated by alternative cytoplasmic C-terminal tails, suggesting that different prominin-1 splice variants might interact with distinct protein partners, and (iv) a summing up of the different prominin-1 splice variants.