Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4


Reim,  Gerlinde
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;


Brand,  Michael
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Reim, G., & Brand, M. (2006). Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development, 133(14), 2757-2770.

Cite as: https://hdl.handle.net/21.11116/0000-0001-1062-E
Dorsoventral (DV) axis formation of the vertebrate embryo is controlled by the maternal genome and is subsequently refined zygotically. In the zygote, repression of ventralizing Bmp activity on the dorsal side through chordin and noggin is crucial for establishment of a dorsally located organizer. This interplay generates a zygotic Bmp activity gradient that defines distinct positional values along the DV axis. The maternal processes that control expression of the zygotic genes implicated in DV patterning are largely unknown. spiel-ohne-grenzen (spg/pou2) is a maternally and zygotically expressed zebrafish gene that encodes the POU domain transcription factor Pou2, an ortholog of mammalian Oct4/Pou5f1. We show that embryos that are genetically depleted of both maternal and zygotic pou2 function (MZspg) exhibit extreme DV patterning defects and, independently, a blastoderm-specific arrest of epiboly. Dorsal tissues expand to the ventral side at the expense of ventrolateral tissue in MZspg embryos. Dorsally expressed Bmp-antagonists, such as Chd and Nog1, and Gsc are ectopically activated at ventral levels in MZspg. Lack of ventral specification is apparent very early, suggesting that maternal processes are affected in MZspg. Indeed, maternal pou2 function is necessary to initiate zygotic expression of ventrally expressed genes such as bmp2b and bmp4, and for proper activation of bmp7, vox, vent and eve1. A constitutively active Alk8-TGFbeta-receptor can ectopically induce bmp2b and bmp4 and rescues the dorsalization of MZspg. This indicates that pou2 acts upstream of Alk8, a maternally provided receptor implicated in the activation of zygotic bmp2b and bmp4 transcription. Consistent with this possibility, Bmp gene misexpression can rescue MZspg embryos, indicating that TGFbeta-mediated signal transduction itself is intact in absence of Pou2. Inhibition of Fgf signaling, another pathway with early dorsalizing activity, can also restore and even ventralize MZspg embryos. The requirement for pou2 to initiate bmp2b expression can therefore be bypassed by releasing the repressive function of Fgf signaling upon bmp2b transcription. In transplantation experiments, we find that dorsalized cells from prospective ventrolateral regions of MZspg embryos are non cell-autonomously respecified to a ventral fate within wild-type host embryos. Analysis of pou2 mRNA injected MZspg embryos shows that pou2 is required on the ventral side of cleavage stage embryos. Based on the maternal requirement for pou2 in ventral specification, we propose that ventral specification employs an active, pou2-dependent maternal induction step, rather than a default ventralizing program.