Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends

MPG-Autoren
/persons/resource/persons219233

Helenius,  Jonne
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219039

Brouhard,  Gary
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219285

Kalaidzidis,  Yannis
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219112

Diez,  Stefan
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219249

Howard,  Jonathon
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S., & Howard, J. (2006). The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature, 441(7089), 115-119.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-10B6-F
Zusammenfassung
The microtubule cytoskeleton is a dynamic structure in which the lengths of the microtubules are tightly regulated. One regulatory mechanism is the depolymerization of microtubules by motor proteins in the kinesin-13 family. These proteins are crucial for the control of microtubule length in cell division, neuronal development and interphase microtubule dynamics. The mechanism by which kinesin-13 proteins depolymerize microtubules is poorly understood. A central question is how these proteins target to microtubule ends at rates exceeding those of standard enzyme-substrate kinetics. To address this question we developed a single-molecule microscopy assay for MCAK, the founding member of the kinesin-13 family. Here we show that MCAK moves along the microtubule lattice in a one-dimensional (1D) random walk. MCAK-microtubule interactions were transient: the average MCAK molecule diffused for 0.83 s with a diffusion coefficient of 0.38 microm2 s(-1). Although the catalytic depolymerization by MCAK requires the hydrolysis of ATP, we found that the diffusion did not. The transient transition from three-dimensional diffusion to 1D diffusion corresponds to a "reduction in dimensionality" that has been proposed as the search strategy by which DNA enzymes find specific binding sites. We show that MCAK uses this strategy to target to both microtubule ends more rapidly than direct binding from solution.