English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic.

MPS-Authors
/persons/resource/persons219526

Pelkmans,  Lucas
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219807

Zerial,  Marino
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pelkmans, L., Burli, T., Zerial, M., & Helenius, A. (2004). Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell, 118(6), 767-780.


Cite as: https://hdl.handle.net/21.11116/0000-0001-1219-F
Abstract
Endocytosis comprises several routes of internalization. An outstanding question is whether the caveolar and endosomal pathways intersect. Following transport of the caveolar protein Caveolin-1 and two cargo complexes, Simian Virus 40 and Cholera toxin, in live cells, we uncovered a Rab5-dependent pathway in which caveolar vesicles are targeted to early endosomes and form distinct and stable membrane domains. In endosomes, the low pH selectively allowed the toxin to diffuse out of the caveolar domains into the surrounding membrane, while the virus remained trapped. Thus, we conclude that, unlike cyclic assembly and disassembly of coat proteins in vesicular transport, oligomeric complexes of caveolin-1 confer permanent structural stability to caveolar vesicles that transiently interact with endosomes to form subdomains and release cargo selectively by compartment-specific cues.