Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin

MPG-Autoren
/persons/resource/persons219470

Müller,  Daniel J.
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Philippsen, A., Im, W., Engel, A., Schirmer, T., Roux, B., & Müller, D. J. (2002). Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin. Biophysical Journal, 82(3), 1667-1676.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-13A8-C
Zusammenfassung
The atomic force microscope (AFM) was used to image native OmpF porin and to detect the electrostatic potential generated by the protein. To this end the OmpF porin trimers from Escherichia coli was reproducibly imaged at a lateral resolution of approximately 0.5 nm and a vertical resolution of approximately 0.1 nm at variable electrolyte concentrations of the buffer solution. At low electrolyte concentrations the charged AFM probe not only contoured structural details of the membrane protein surface but also interacted with local electrostatic potentials. Differences measured between topographs recorded at variable ionic strength allowed mapping of the electrostatic potential of OmpF porin. The potential map acquired by AFM showed qualitative agreement with continuum electrostatic calculations based on the atomic OmpF porin embedded in a lipid bilayer at the same electrolyte concentrations. Numerical simulations of the experimental conditions showed the measurements to be reproduced quantitatively when the AFM probe was included in the calculations. This method opens a novel avenue to determine the electrostatic potential of native protein surfaces at a lateral resolution better than 1 nm and a vertical resolution of approximately 0.1 nm.