Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Self-regulation of dACC in real-time fMRI neurofeedback with simultaneous EEG

MPG-Autoren
/persons/resource/persons219854

Shetsova,  O
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84277

Veit,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shetsova, O., Izyurov, I., Jamalabadi, H., Krylova, M., Alizadeh, S., & Veit, R. (2017). Self-regulation of dACC in real-time fMRI neurofeedback with simultaneous EEG. Poster presented at 18th Conference of Junior Neuroscientists of Tübingen (NeNa 2017), Schramberg, Germany.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-00F8-7
Zusammenfassung
Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging technique that allows for a voluntary control over own brain signals, as well as targeting specific brain regions which
are unreachable by EEG. Despite the promising results of neurofeedback in a number of studies, it still faces substantial challenges mainly due to the unexplained inter-subject variability in self-regulation learning. Investigation of the underlying mechanism of neurofeedback
success and failure by looking at the simultaneous EEG/fMRI signal related to those conditions may help to improve neurofeedback learning and success rate. However, fusion of the data from different modalities requires a proper temporal model that links the underlying neuronal dynamics of interest (EEG) to the measured hemodynamic BOLD responses. In the current project, we focus on up- and downregulation of dorsal Anterior Cingulate Cortex (dACC) using rtfMRI neurofeedback because of its relevance in many important brain functions (e.g. resting state salience network) and the known alternation in several psychiatric disorders. We hypothesize that certain trains of EEG dynamics may be differentially linked to distinct subsequent slow BOLD signature (e.g. up- or downregulation of dACC) and
therefore, this information can be further used (in terms of a second feedback signal) to guide the mental strategy of the subjects to better control their brain metabolic activity.