English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Land use change and El Nino-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia

MPS-Authors
/persons/resource/persons62612

Zaehle,  Sönke
Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Prof. Dr. Martin Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62529

Roedenbeck,  C.
Inverse Data-driven Estimation, Dr. C. Rödenbeck, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2830.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kondo, M., Ichii, K., Patra, P. K., Canadell, J. G., Poulter, B., Sitch, S., et al. (2018). Land use change and El Nino-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications, 9: 1154. doi:10.1038/s41467-018-03374-x.


Cite as: https://hdl.handle.net/21.11116/0000-0001-01DF-3
Abstract
An integrated understanding of the biogeochemical consequences of climate extremes and land use changes is needed to constrain land-surface feedbacks to atmospheric CO2 from associated climate change. Past assessments of the global carbon balance have shown particularly high uncertainty in Southeast Asia. Here, we use a combination of model ensembles to show that intensified land use change made Southeast Asia a strong source of CO2 from the 1980s to 1990s, whereas the region was close to carbon neutral in the 2000s due to an enhanced CO2 fertilization effect and absence of moderate-to-strong El Niño events. Our findings suggest that despite ongoing deforestation, CO2 emissions were substantially decreased during the 2000s, largely owing to milder climate that restores photosynthetic capacity and suppresses peat and deforestation fire emissions. The occurrence of strong El Niño events after 2009 suggests that the region has returned to conditions of increased vulnerability of carbon stocks.