Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

The Joint Modes of the Coupled Atmosphere-Ocean System Observed from 1967 to 1986


Xu,  Jin-Song
MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 2MB

(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available

Xu, J.-S. (1993). The Joint Modes of the Coupled Atmosphere-Ocean System Observed from 1967 to 1986. Journal of Climate, 6, 816-838. doi:10.1175/1520-0442(1993)006<0816:TJMOTC>2.0.CO;2.

Cite as: https://hdl.handle.net/21.11116/0000-0001-87BA-5
Two aspects of the principal oscillation pattern (POP) analysis are used to study the large-scale modes of the coupled atmosphere-ocean system. First, POPs can be considered as the normal modes of the system; one way of studying these normal modes is to estimate them from data. Second, a POP analysis can be viewed as a multivariate spectral analysis and the spectral characteristics of the modes are by-products of the POP analysis. Both aspects are studied using a combined dataset that includes both atmospheric (sea level pressure, 700-mb, and 200-mb zonal winds) and oceanic (sea surface temperature, Pacific sea level, and Pacific subsurface temperature) parameters. Six joint modes of the coupled atmosphere-ocean system are found in this study. For modes with small eigenvalues, the atmosphere plays an important role. The associated oceanic anomalies appear to be generated by the anomalous atmospheric conditions. For the other modes, which have most of their power on much longer time scales, the ocean is more actively involved. Modes 4 and 5 describe decadal time scale variations. Mode 4 is characterized by changes in SST in all three tropical oceans, and in organized convection over the west Pacific. The results allow us to speculate that these tropical features might excite changes in the extratropical tropospheric and oceanic circulations. Mode 5 shows global-scale SST anomalies and large atmospheric anomalies in the Southern Hemispheric circulation. Mode 6 is the only oscillatory normal mode found in the coupled atmosphere-ocean system, it describes the quasi-cyclic behavior of the El Nino-Southern Oscillation phenomenon.