English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Activation of olefins via asymmetric Brønsted acid catalysis

MPS-Authors
/persons/resource/persons200421

Tsuji,  Nobuya
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons219934

Kennemur,  Jennifer L.
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons219936

Buyck,  Thomas
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons200419

Lee,  Sunggi
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons219938

Prévost,  Sébastien
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132871

Kaib,  Philip S. J.
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58537

Farès,  Christophe
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Supplementary Material (public)
There is no public supplementary material available
Citation

Tsuji, N., Kennemur, J. L., Buyck, T., Lee, S., Prévost, S., Kaib, P. S. J., et al. (2018). Activation of olefins via asymmetric Brønsted acid catalysis. Science, 359(6383), 1501-1505. doi:10.1126/science.aaq0445.


Cite as: http://hdl.handle.net/21.11116/0000-0001-2AD6-F
Abstract
The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Brønsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Brønsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Brønsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. The methodology gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.