English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Genomics meets remote sensing in global change studies: monitoring and predicting phenology, evolution and biodiversity

MPS-Authors
/persons/resource/persons4169

Schuman,  Meredith C.
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yamasaki, E., Altermatt, F., Cavender-Bares, J., Schuman, M. C., Zuppinger-Dingley, D., Garonna, I., et al. (2018). Genomics meets remote sensing in global change studies: monitoring and predicting phenology, evolution and biodiversity. Current Opinion in Environmental Sustainability, 29, 177-186. doi:10.1016/j.cosust.2018.03.005.


Cite as: https://hdl.handle.net/21.11116/0000-0001-181A-8
Abstract
Although the monitoring and prediction of ecosystem dynamics under global change have been extensively assessed, large gaps remain in our knowledge, including a need for concepts in rapid evolution and phenotypic plasticity, and a lack of large-scale and long-term monitoring. Recent genomic studies using the model species Arabidopsis predict that plastic and evolutionary changes in phenology may affect plant reproduction. We propose that three genomic-scale methods would enhance global change studies. First, genome-wide RNA sequencing enables monitoring of diverse functional traits and phenology. Second, sequencing of DNA variants highlights the importance of genetic variation and evolution. Third, DNA metabarcoding provides efficient and unbiased ecosystem monitoring. Integrating these genomic-scale studies with remote sensing will promote the understanding and prediction of biodiversity change.