Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Inhibition of the photoinduced structural phase transition in the excitonic insulator Ta2NiSe5

MPG-Autoren
/persons/resource/persons126984

Mor,  Selene
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons81237

Herzog,  Marc
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Institute for Physics and Astronomy, University of Potsdam;

/persons/resource/persons71845

Noack,  Johannes
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22181

Trunschke,  Annette
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22128

Stähler,  Julia
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevB.97.115154.pdf
(Verlagsversion), 463KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mor, S., Herzog, M., Noack, J., Katayama, N., Nohara, M., Takagi, H., et al. (2018). Inhibition of the photoinduced structural phase transition in the excitonic insulator Ta2NiSe5. Physical Review B, 97(11): 115154. doi:10.1103/PhysRevB.97.115154.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-3BB9-D
Zusammenfassung
Femtosecond time-resolved midinfrared reflectivity is used to investigate the electron and phonon dynamics occurring at the direct band gap of the excitonic insulator Ta2NiSe5 below the critical temperature of its structural phase transition. We find that the phonon dynamics show a strong coupling to the excitation of free carriers at the Γ point of the Brillouin zone. The optical response saturates at a critical excitation fluence FC=0.30±0.08 mJ/cm2 due to optical absorption saturation. This limits the optical excitation density in Ta2NiSe5 so that the system cannot be pumped sufficiently strongly to undergo the structural change to the high-temperature phase. We thereby demonstrate that Ta2NiSe5 exhibits a blocking mechanism when pumped in the near-infrared regime, preventing a nonthermal structural phase transition.