English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Geological mapping of the Ac-10 Rongo Quadrangle of Ceres

MPS-Authors
/persons/resource/persons187931

Platz,  Thomas
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104104

Nathues,  Andreas
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103969

Hoffmann,  Martin
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons135872

Schäfer,  Michael
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Platz, T., Nathues, A., Sizemore, H., Crown, D., Hoffmann, M., Schäfer, M., et al. (2018). Geological mapping of the Ac-10 Rongo Quadrangle of Ceres. Icarus, 316, 140-153. doi:10.1016/j.icarus.2017.08.001.


Cite as: https://hdl.handle.net/21.11116/0000-0001-1E64-E
Abstract
The Dawn spacecraft arrived at dwarf planet Ceres in spring 2015 and imaged its surface from four successively lower polar orbits at ground sampling dimensions between ∼1.3 km/px and ∼35 m/px. To understand the geological history of Ceres a mapping campaign was initiated to produce a set of 15 quadrangle-based geological maps using the highest-resolution Framing Camera imagery. Here we present the geological map of the Ac-10 Rongo Quadrangle, which is located at the equator encompassing the region from 22°N to 22°S and 288° to 360°E. The total relief within the quadrangle is 11.1 km with altitudes ranging from about −7.3 km to +3.8 km. We identified nine geological units based on surface morphology and surface textural characteristics. The dominant and most widespread unit is the cratered terrain (crt) representing ancient reworked crustal material. Its consistent formation age across the quadrangle is 1.8 Ga. Two edifices (unit th), Ahuna Mons and an unnamed tholus within Begbalel Crater, are interpreted to be of (cryo)volcanic origin. The southwest portion of the quadrangle is dominated by ejecta material (Ye) emplaced during the formation of the 260-km diameter Yalode impact basin at about 580 Ma. Rayed crater ejecta material (cr) is dominant in the eastern part of the quadrangle but also occurs in isolated patches up to a distance of 455 km from the 34 km diameter source crater Haulani. The remaining five geological units also represent impact crater materials: degraded rim (crdeg), bright crater (cb), hummocky floor (cfh), talus (ta), and crater (c) materials.

Widespread Yalode and Haulani ejecta materials can potentially be utilised as stratigraphic markers. Therefore, it is essential to consistently map their full areal extent and to date their formations using impact crater statistics.