English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Thermodynamics as a theory of decision-making with information-processing costs

MPS-Authors
/persons/resource/persons84121

Ortega,  Pedro A.
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Sensorimotor Learning and Decision-Making, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83827

Braun,  Daniel A.
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Sensorimotor Learning and Decision-Making, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ortega, P. A., & Braun, D. A. (2013). Thermodynamics as a theory of decision-making with information-processing costs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2153): 20120683, pp. 1-18. doi:10.1098/rspa.2012.0683.


Cite as: https://hdl.handle.net/21.11116/0000-0001-1ED5-E
Abstract
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here, we propose a thermodynamically inspired formalization of bounded rational decision-making where information processing is modelled as state changes in thermodynamic systems that can be quantified by differences in free energy. By optimizing a free energy, bounded rational decision-makers trade off expected utility gains and information-processing costs measured by the relative entropy. As a result, the bounded rational decision-making problem can be rephrased in terms of well-known variational principles from statistical physics. In the limit when computational costs are ignored, the maximum expected utility principle is recovered. We discuss links to existing decision-making frameworks and applications to human decision-making experiments that are at odds with expected utility theory. Since most of the mathematical machinery can be borrowed from statistical physics, the main contribution is to re-interpret the formalism of thermodynamic free-energy differences in terms of bounded rational decision-making and to discuss its relationship to human decision-making experiments.