English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Controls on modern erosion and the development of the Pearl River drainage in the late Paleogene

MPS-Authors
/persons/resource/persons210278

Böning,  Philipp
Max Planck Research Group Marine Isotope Geochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210654

Pahnke,  Katharina
Max Planck Research Group Marine Isotope Geochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Liu, C., Clift, P. D., Carter, A., Böning, P., Hu, Z., Sun, Z., et al. (2017). Controls on modern erosion and the development of the Pearl River drainage in the late Paleogene. Marine Geology, 394, 52-68.


Cite as: https://hdl.handle.net/21.11116/0000-0002-EF99-5
Abstract
The Pearl River and its tributaries drains large areas of southern China and has been the primary source of sediment to the northern continental margin of the South China Sea since its opening. In this study we use a combination of bulk sediment geochemistry, Nd and Sr isotope geochemistry, and single grain zircon U-Pb dating to understand the source of sediment in the modern drainage. We also performed zircon U-Pb dating on Eocene sedimentary rocks sampled by International Ocean Discovery Program (IODP) Expedition 349 in order to constrain the source of sediment to the rift before the Oligocene. A combination of Nd and Sr isotopes shows that the Gui, Liu and Dong Rivers are likely not important sources. Single grain zircon dates emphasize the importance of the westernmost tributaries (Hongshui and Yu Rivers), which drain the highest topography and tectonically active areas, as the primary sediment producers. Our data indicate that climate is not the primary control on erosion patterns and intensities. Zircon dating also shows that the Gui and Liu Rivers are not generating large sediment yields. Discrepancies between these new data and earlier samples make the role of the Dong River hard to determine, although Nd isotopes suggest that it is not dominant. The source of sediment during the Eocene at IODP Site U1435 appears to have been a relatively local basement source, or a regionally restricted river only draining nearby areas of the Cathaysia Block, similar, but not identical, to the modern Dong River. There is no evidence for a large regional river and we exclude sediment transport from the southwest (Indochina). Our data are consistent with small drainage systems dominating the basin until the end of the Oligocene (~ 24 Ma), after which the Pearl River expanded towards its modern state as a result of headwater capture largely towards the west.