Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Soft X-ray spectroscopy as a probe for gas-phase protein structure: Electron impact ionization from within.

MPG-Autoren
/persons/resource/persons200487

Bari,  S.
Research Group of Structural Dynamics of (Bio)Chemical Systems, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons199023

Boll,  R.
Research Group of Structural Dynamics of (Bio)Chemical Systems, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15915

Techert,  S.
Research Group of Structural Dynamics of (Bio)Chemical Systems, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

2578262.pdf
(Verlagsversion), 873KB

Ergänzendes Material (frei zugänglich)

2578262_Suppl.pdf
(Ergänzendes Material), 641KB

Zitation

Bari, S., Egorov, D., Jansen, T. L., Boll, R., Hoekstra, R., Techert, S., et al. (2018). Soft X-ray spectroscopy as a probe for gas-phase protein structure: Electron impact ionization from within. Chemistry - A European Journal, 24(30), 7631-7636. doi:10.1002/chem.201801440.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-28CD-C
Zusammenfassung
Preservation of protein conformation upon transfer into the gas‐phase is key for structure determination of free single molecules, e.g. using X‐ray free‐electron lasers. In the gas phase, the helicity of melittin decreases strongly as the protein's protonation state increases. We demonstrate the sensitivity of soft X‐ray spectroscopy to the gas phase conformation of melittin cations ([melittin+qH]q+, q=2‐4) in a cryogenic linear radiofrequency ion trap. With increasing helicity we observe a decrease of the dominating carbon 1s‐* transition in the amide C=O bonds for non‐dissociative single ionization and an increase for non‐dissociative double ionization. As the underlying mechanism we identify inelastic electron scattering. Using an independent atom model we show that the more compact nature of the helical protein conformation substantially increases the probability for off‐site intramolecular ionization by inelastic Auger electron scattering.