Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Gait and upper limb variability in Parkinson's disease patients with and without freezing of gait

There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Barbe, M., Amarell, M., Snijders, A., Florin, E., Quatuor, E.-L., Schönau, E., et al. (2014). Gait and upper limb variability in Parkinson's disease patients with and without freezing of gait. Journal of Neurology, 261(2), 330-342. doi:10.1007/s00415-013-7199-1.

Cite as: https://hdl.handle.net/21.11116/0000-0001-2BFF-1
Patients with Parkinson’s disease (PD) and freezing of gait (FOG) (freezers) demonstrate high gait variability. The objective of this study was to determine whether freezers display a higher variability of upper limb movements and elucidate if these changes correlate with gait. We were the first group to compare directly objectively measured gait and upper limb movement variability of freezers between freezing episodes. Patients with objectively verified FOG (n = 11) and PD patients without FOG (non-freezers) (n = 11) in a non-randomized medication condition (OFF/ON) were analyzed. Uncued antiphasic finger tapping and forearm diadochokinetic movements were analyzed via three-dimensional ultrasound kinematic measurements. Gait variability of straight gait was assessed using ground reaction forces. Freezers had shorter stride length (p = 0.004) and higher stride length variability (p = 0.005) in the medication OFF condition. Movement variability was not different during finger tapping or diadochokinesia between the groups. There was a trend towards more freezing of the upper limb during finger tapping for the freezers (p = 0.07). Variability in stride length generation and stride timing was not associated with variability of upper limb movement in freezers. Our findings demonstrate that: (1) freezers have a higher spatial gait variability between freezing episodes; (2) freezing-like episodes of the upper limb occur in PD patients, and tend to be more pronounced among freezers than non-freezers for finger tapping; (3) spatial and temporal upper extremity variability is equally affected in freezers and non-freezers in an uncued task. Upper limb freezing is not correlated to lower limb freezing, implicating a different pathophysiology.