English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Translation in prokaryotes.

MPS-Authors
/persons/resource/persons15723

Rodnina,  M. V.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

2580795.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rodnina, M. V. (2018). Translation in prokaryotes. Cold Spring Harbor Perspectives in Biology, 10(9): a032664. doi:10.1101/cshperspect.a032664.


Cite as: http://hdl.handle.net/21.11116/0000-0001-2C66-C
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon–anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.