Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

Natural image statistics neural representation learning

MPG-Autoren
/persons/resource/persons83805

Bethge,  Matthias
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bethge, M. (2014). Natural image statistics neural representation learning. Talk presented at Autonomous Learning: Summer School 2014. Leipzig, Germany.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-3383-1
Zusammenfassung
n important motivation for studying the statistics of natural images is the search for image representations which facilitate visual inference tasks. Representations optimized directly for a given task are at risk of overfitting, that is, the representations might work well for that particular task but might not generalize well to others. However, the striking ability of our visual system to perform well in a variety of different situations and to recognize objects even when they have been seen only once suggests that it exploits general structural regularities of natural images. In this lecture, I will give an overview on natural image statistics and how different types of representations have been derived by modeling different statistical properties of natural images.