Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Critical scaling of the mutual information in two-dimensional disordered Ising models

MPG-Autoren
/persons/resource/persons217464

Sriluckshmy,  P. V.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons217433

Mandal,  Ipsita
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sriluckshmy, P. V., & Mandal, I. (2018). Critical scaling of the mutual information in two-dimensional disordered Ising models. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 043301. doi:10.1088/1742-5468/aab1b6.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-420F-5
Zusammenfassung
Renyi mutual information, computed from second Renyi entropies, can identify classical phase transitions from their finite-size scaling at critical points. We apply this technique to examine the presence or absence of finite temperature phase transitions in various two-dimensional models on a square lattice, which are extensions of the conventional Ising model by adding a quenched disorder. When the quenched disorder causes the nearest neighbor bonds to be both ferromagnetic and antiferromagnetic, (a) a spin glass phase exists only at zero temperature, and (b) a ferromagnetic phase exists at a finite temperature when the antiferromagnetic bond distributions are sufficiently dilute. Furthermore, finite temperature paramagnetic-ferromagnetic transitions can also occur when the disordered bonds involve only ferromagnetic couplings of random strengths. In our numerical simulations, the 'zero temperature only' phase transitions are identified when there is no consistent finite-size scaling of the Renyi mutual information curves, while for finite temperature critical points, the curves can identify the critical temperature T-c by their crossings at T-c and 2 T-c.