English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

MPS-Authors
/persons/resource/persons44182

Bringmann,  Karl       
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:1803.00804.pdf
(Preprint), 232KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bringmann, K., & Wellnitz, P. (2018). Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars. Retrieved from http://arxiv.org/abs/1803.00804.


Cite as: https://hdl.handle.net/21.11116/0000-0001-3E2A-C
Abstract
Tree-adjoining grammars are a generalization of context-free grammars that are well suited to model human languages and are thus popular in computational linguistics. In the tree-adjoining grammar recognition problem, given a grammar $\Gamma$ and a string $s$ of length $n$, the task is to decide whether $s$ can be obtained from $\Gamma$. Rajasekaran and Yooseph's parser (JCSS'98) solves this problem in time $O(n^{2\omega})$, where $\omega < 2.373$ is the matrix multiplication exponent. The best algorithms avoiding fast matrix multiplication take time $O(n^6)$. The first evidence for hardness was given by Satta (J. Comp. Linguist.'94): For a more general parsing problem, any algorithm that avoids fast matrix multiplication and is significantly faster than $O(|\Gamma| n^6)$ in the case of $|\Gamma| = \Theta(n^{12})$ would imply a breakthrough for Boolean matrix multiplication. Following an approach by Abboud et al. (FOCS'15) for context-free grammar recognition, in this paper we resolve many of the disadvantages of the previous lower bound. We show that, even on constant-size grammars, any improvement on Rajasekaran and Yooseph's parser would imply a breakthrough for the $k$-Clique problem. This establishes tree-adjoining grammar parsing as a practically relevant problem with the unusual running time of $n^{2\omega}$, up to lower order factors.