Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Matter imprints in waveform models for neutron star binaries: tidal and self-spin effects

MPG-Autoren

Dietrich ,  Tim
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192115

Puerrer,  Michael
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1804.02235.pdf
(Preprint), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dietrich, T., Khan, S., Dudi, R., Kapadia, S. J., Kumar, P., Nagar, A., et al. (2019). Matter imprints in waveform models for neutron star binaries: tidal and self-spin effects. Physical Review D, 99: 024029. doi:10.1103/PhysRevD.99.024029.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-402F-3
Zusammenfassung
The combined observation of gravitational and electromagnetic waves from the
coalescence of two neutron stars marks the beginning of multi-messenger
astronomy with gravitational waves (GWs). The development of accurate
gravitational waveform models is a crucial prerequisite to extract information
about the properties of the binary system that generated a detected GW signal.
In binary neutron star systems (BNS), tidal effects also need to be
incorporated in the modeling for an accurate waveform representation. Building
on previous work [Phys.Rev.D96 121501], we explore the performance of
inspiral-merger waveform models that are obtained by adding a numerical
relativity (NR) based approximant for the tidal part of the phasing (NRTidal)
to existing models for nonprecessing and precessing binary black hole systems
(SEOBNRv4, PhenomD and PhenomPv2), as implemented in the LSC Algorithm Library
Suite. The resulting BNS waveforms are compared and contrasted to target
waveforms hybridizing NR waveforms, covering the last approx. 10 orbits up to
merger and extending through the postmerger phase, with inspiral waveforms
calculated from 30Hz obtained with TEOBResumS. The latter is a state-of-the-art
effective-one-body waveform model that blends together tidal and spin effects.
We probe that the combination of the PN-based self-spin terms and of the
NRTidal description is necessary to obtain minimal mismatches (< 0.01) and
phase differences (< 1 rad) with respect to the target waveforms. However, we
also discuss possible improvements and drawbacks of the NRTidal approximant in
its current form, since we find that it tends to overestimate the tidal
interaction with respect to the TEOBResumS model during the inspiral.