Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Simulations of stellar winds and planetary bodies: Magnetized obstacles in a super-Alfvénic flow with southward IMF

MPG-Autoren
/persons/resource/persons103926

Glassmeier,  Karl-Heinz
Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vernisse, Y., Riousset, A., Motschmann, U., & Glassmeier, K.-H. (2018). Simulations of stellar winds and planetary bodies: Magnetized obstacles in a super-Alfvénic flow with southward IMF. Planetary and Space Science, 152, 18-30. doi:10.1016/j.pss.2018.01.010.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-11F1-9
Zusammenfassung
This study addresses the issue of the electromagnetic interactions between a stellar wind and planetary magnetospheres with various dipole field strengths by means of hybrid simulations. Focus is placed on the configuration where the upstream plasma magnetic field is parallel to the planetary magnetic moment (also called “Southward-IMF” configuration), leading to anti-parallel magnetic fields in the dayside interaction region. Each type of plasma interaction is characterized by means of currents flowing in the interaction region. Reconnection triggered in the tail in such configuration is shown to affect significantly the structure of the magnetotail at early stages. On the dayside, only the magnetopause current is observable for moderate planetary dipole field amplitude, while both bow-shock and magnetotail currents are identifiable downtail from the terminator. Strong differences in term of temperature for ions are particularly noticeable in the magnetosheath and in the magnetotail, when the present results are compared with our previous study, which focused on “Northward-IMF” configuration.