English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the number of Bose-selected modes in driven-dissipative ideal Bose gases

MPS-Authors
/persons/resource/persons184641

Ketzmerick,  Roland
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184474

Eckardt,  André
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schnell, A., Ketzmerick, R., & Eckardt, A. (2018). On the number of Bose-selected modes in driven-dissipative ideal Bose gases. Physical Review E, 97(3): 032136. doi:10.1103/PhysRevE.97.032136.


Cite as: https://hdl.handle.net/21.11116/0000-0001-4818-4
Abstract
In an ideal Bose gas that is driven into a steady state far from thermal equilibrium, a generalized form of Bose condensation can occur. Namely, the single-particle states unambiguously separate into two groups: the group of Bose-selected states, whose occupations increase linearly with the total particle number, and the group of all other states whose occupations saturate [Phys. Rev. Lett. 111, 240405 (2013)]. However, so far very little is known about how the number of Bose-selected states depends on the properties of the system and its coupling to the environment. The answer to this question is crucial since systems hosting a single, a few, or an extensive number of Bose-selected states will show rather different behavior. While in the former two scenarios each selected mode acquires a macroscopic occupation, corresponding to (fragmented) Bose condensation, the latter case rather bears resemblance to a high-temperature state of matter. In this paper, we systematically investigate the number of Bose-selected states, considering different classes of the rate matrices that characterize the driven-dissipative ideal Bose gases in the limit of weak system-bath coupling. These include rate matrices with continuum limit, rate matrices of chaotic driven systems, random rate matrices, and rate matrices resulting from thermal baths that couple to a few observables only.