Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Interaction Dependent Heating and Atom Loss in a Periodically Driven Optical Lattice

MPG-Autoren
/persons/resource/persons60788

Reitter,  Martin
Quantum Many Body Systems, Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons220807

Näger,  Jakob
Quantum Many Body Systems, Max Planck Institute of Quantum Optics, Max Planck Society;

Wintersperger,  Karen
Quantum Many Body Systems, Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons184989

Sträter,  Christoph
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons60292

Bloch,  Immanuel
Quantum Many Body Systems, Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons184474

Eckardt,  Andre
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

5552preprint.pdf
(Preprint), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Reitter, M., Näger, J., Wintersperger, K., Sträter, C., Bloch, I., Eckardt, A., et al. (2017). Interaction Dependent Heating and Atom Loss in a Periodically Driven Optical Lattice. Physical Review Letters, 119(20): 200402. doi:10.1103/PhysRevLett.119.200402.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-52CD-C
Zusammenfassung
Periodic driving of optical lattices has enabled the creation of novel band structures not realizable in static lattice systems, such as topological bands for neutral particles. However, especially driven systems of interacting bosonic particles often suffer from strong heating. We have systematically studied heating in an interacting Bose-Einstein condensate in a driven one-dimensional optical lattice. We find interaction dependent heating rates that depend on both the scattering length and the driving strength and identify the underlying resonant intra-and interband scattering processes. By comparing the experimental data and theory, we find that, for driving frequencies well above the trap depth, the heating rate is dramatically reduced by the fact that resonantly scattered atoms leave the trap before dissipating their energy into the system. This mechanism of Floquet evaporative cooling offers a powerful strategy to minimize heating in Floquet engineered quantum gases.