Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Towards assessing randomness and complexity in human motion trajectories

MPG-Autoren
/persons/resource/persons192603

Peng,  Z
Research Group Sensorimotor Learning and Decision-Making, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84447

Genewein,  T
Research Group Sensorimotor Learning and Decision-Making, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83827

Braun,  D
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Sensorimotor Learning and Decision-Making, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Peng, Z., Genewein, T., & Braun, D. (2013). Towards assessing randomness and complexity in human motion trajectories. Poster presented at 14th Conference of Junior Neuroscientists of Tübingen (NeNa 2013): Do the Results, Justify the Methods, Schramberg, Germany.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-4E3F-3
Zusammenfassung
Intelligence is often related to the behavioural complexity an agent can generate. For example, when studying human language one typically finds that sequences of letters or words are neither completely random nor totally determinate. This is often assessed quantitatively by studying the conditional entropy of sequences [1]. Similarly, entropy measures can also be used to assess the human ability to generate random numbers — a task that humans often find difficult [2]. Previous studies in motor control have found, for example, that humans cannot significantly increase the level of trajectory randomness in single-joint movements [3]. Here we test human randomness when generating trajectories and compare entropic measurements of random vs. non-random motion. We designed a motor task where participants controlled a cursor by moving a Phantom manipulandum in a three-dimensional virtual environment. The cursor was constrained to move inside a 10x10 grid. In the first part of the experiment participants were asked to (1) perform a rhythmic movement, (2) write pre-specified letters, and (3) perform a random movement. In the second part of the experiment participants were asked again to perform random movements, but this time they received feedback from an artificial intelligence (based on context-tree weighting) predicting their next move. We found that participants can change the randomness of their behaviour through feedback and that excess entropy can be used as a complexity measure of motion trajectories. [1] Rao, R. P. N., Yadav, N., Vahia, M. N., Joglekar, H., Adhikari, R., and Mahadevan, I. (2009). Entropic evidence for linguistic structure in the Indus script. Science, 324(5931):1165. [2] Figurska, M., Stanczyk, M., and Kulesza, K. (2008). Humans cannot consciously generate random numbers sequences: Polemic study. Medical hypotheses,